Amper-ia.ru

Строительная компания
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет количества тепла для нагрева воды

Количество теплоты. Удельная теплоемкость вещества.

Количеством теплоты называют количественную меру изменения внутренней энергии тела при теплообмене (или теплопередаче).

Количество теплоты — это энергия, которую тело отдает при теплообмене (без совершения работы). Количество теплоты, как и энергия, измеряется в джоулях (Дж).

Удельная теплоемкость вещества.

Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на 1 градус.

Теплоемкость тела обозначается заглавной латинской буквой С.

От чего зависит теплоемкость тела? Прежде всего, от его массы. Ясно, что для нагрева, напри­мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов.

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 г, а в другой — растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрое. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе­ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1°С температуру воды массой 1 кг, требуется количество теплоты, равное 4200 Дж, а для нагревания на 1 °С такой же массы подсолнечного масла необхо­димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 ºС, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг ·°С)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг · ºС), а удельная теплоемкость льда 2100 Дж/(кг · °С); алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг — °С), а в жидком — 1080 Дж/(кг — °С).

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.

Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.

Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

где Q — количество теплоты, c — удельная теплоемкость, m — масса тела, t1 — начальная темпе­ратура, t2 — конечная температура.

О тепловой энергии простым языком!

Человечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва.

Читать еще:  Автоматический полив теплицы

. энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности.

Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.

Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия, которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.

Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С. Какая нужна мощность источника тепла, чтобы сделать это за 1 час. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!

Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов. Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!

Количество теплоты при различных физических процессах.

Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.

Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты Q , подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.

1. Твердое тело, имеющее температуру T1 , нагреваем до температуры Tпл , затрачивая на этот процесс количество теплоты равное Q1 .

2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2 — Q1 .

3. Далее жидкость, получившаяся в результате плавления твердого тела, нагреваем до температуры кипения (газообразования) Ткп , затрачивая на это количество теплоты равное Q3Q2 .

4. Теперь при неизменной температуре кипения Ткп жидкость кипит и испаряется, превращаясь в газ. Для перехода всей массы жидкости в газ необходимо затратить тепловую энергию в количестве Q4Q3 .

5. На последнем этапе происходит нагрев газа от температуры Ткп до некоторой температуры Т2 . При этом затраты количества теплоты составят Q5Q4 . (Если нагреем газ до температуры ионизации, то газ превратится в плазму.)

Читать еще:  Керамзит для утепления пола в деревянном доме

Таким образом, нагревая исходное твердое тело от температуры Т1 до температуры Т2 мы затратили тепловую энергию в количестве Q5 , переводя вещество через три агрегатных состояния.

Двигаясь в обратном направлении, мы отведем от вещества то же количество тепла Q5 , пройдя этапы конденсации, кристаллизации и остывания от температуры Т2 до температуры Т1 . Разумеется, мы рассматриваем замкнутую систему без потерь энергии во внешнюю среду.

Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.

Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.

Главные формулы теплопередачи.

Формулы очень просты.

Количество теплоты Q в Дж рассчитывается по формулам:

1. Со стороны потребления тепла, то есть со стороны нагрузки:

1.1. При нагревании (охлаждении):

решения в сфере электронагрева и охлаждения
для промышленности

Я хочу, чтобы мне перезвонили

Remplissez le formulaire ci dessous et nous vous rappellerons aux heures indiquées :

НАГРЕВ ОБЪЕМА ЖИДКОСТИ

РАСЧЕТ МОЩНОСТИ, НЕОБХОДИМОЙ ДЛЯ НАГРЕВА ОБЪЕМА ЖИДКОСТИ

Мощность, которая должна быть установлена для повышения температуры объема жидкости, содержащейся в резервуаре, в течение заданного времени, является результатом двух расчетов: расчет мощности для повышения температуры жидкости (Pch) и расчет теплопотерь (Pth)

Установленная мощность (кВт) = Мощности для повышения температуры жидкости ( Pch ) + Теплопотери ( Pth )

1 / Расчет мощности, необходимой для повышения температуры объема жидкости :

— Тепловая мощность : Pch (кВт)

— Вес жидкости : M (кг)

— Удельная теплоемкость жидкости : Cp (ккал/кг×°C)

— Начальная температура : t1 (°C)

— Необходимая конечная температура : t2 (°C)

— Время нагрева : T (ч)

1,2 : Коэффициент запаса, связанный с нашими производственными допусками и изменениями в напряжении сети питания

Pch = (M × Cp × (t2 − t1) × 1,2) ÷ (860 × T)

a/ Расчет массы нагреваемой жидкости :

— Вес жидкости : M (кг)

— Объем жидкости, который необходимо нагреть : V (дм 3 или литры)

— Плотность жидкости : ρ (кг/дм 3 )

M = V × ρ

ρ / Cp для некоторых жидкостей :

Минеральное масло : 0,9 / 0,5

Уксусная кислота : 1,1 / 0,51

Соляная кислота : 1,2 / 0,6

Азотная кислота : 1,5 / 0,66

b/ Расчет объема жидкости :

— Объем резервуара : V (дм 3 )

— Диаметр резервуара : (дм)

— Высота столба жидкости : H1 (дм)

V = π × (∅² ÷ 4) × H1

— Объем резервуара : V (дм 3 )

— Длина резервуара : L (дм)

— Ширина резервуара : W (дм)

— Высота столба жидкости : H1 (дм)

V = L × W × H1

2/ Расчет мощности, необходимой для компенсации потерь тепла :

— Теплопотеря : Pth (кВт)

— Площадь поверхности теплообмена резервуара : S (м 2 )

— Требуемая конечная температура : t2 (°C)

— Температура окружающей среды : ta (°C)

— Коэффициент теплообмена : K (ккал/час × м 2 × °C)

1,2 : Коэффициент запаса, связанный с нашими производственными допусками и изменениями в напряжении сети питания

Pth = (S × (t2 — ta) × K × 1,2) ÷ 860

Коэффициент обмена K как функция скорости ветра и толщины изоляции :

a/ Расчет площади поверхности теплообмена резервуара : S (м 2 )

Площадь поверхности цилиндрического резервуара :

— Площадь поверхности резервуара : S (м 2 )

— Диаметр резервуара : (м)

— Высота резервуара : H2 (м)

S = (π × (∅² ÷ 4)) + (π × ∅ × H2)

Площадь поверхности прямоугольного резервуара :

— Площадь поверхности резервуара : S (м 2 )

— Длина резервуара : L (м)

Читать еще:  Как обшить вагонкой баню

— Ширина резервуара : W (м)

— Высота столба жидкости : H2 (м)

S = ((L + W ) × H2 × 2) + (L × W)

Количество теплоты. Удельная теплоемкость вещества.

Количеством теплоты называют количественную меру изменения внутренней энергии тела при теплообмене (или теплопередаче).

Количество теплоты — это энергия, которую тело отдает при теплообмене (без совершения работы). Количество теплоты, как и энергия, измеряется в джоулях (Дж).

Удельная теплоемкость вещества.

Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на 1 градус.

Теплоемкость тела обозначается заглавной латинской буквой С.

От чего зависит теплоемкость тела? Прежде всего, от его массы. Ясно, что для нагрева, напри­мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов.

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 г, а в другой — растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрое. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе­ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1°С температуру воды массой 1 кг, требуется количество теплоты, равное 4200 Дж, а для нагревания на 1 °С такой же массы подсолнечного масла необхо­димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 ºС, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг ·°С)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг · ºС), а удельная теплоемкость льда 2100 Дж/(кг · °С); алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг — °С), а в жидком — 1080 Дж/(кг — °С).

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.

Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.

Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

где Q — количество теплоты, c — удельная теплоемкость, m — масса тела, t1 — начальная темпе­ратура, t2 — конечная температура.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector